DISASTER MEDICINE No. 2 •2025
https://doi.org/10.33266/2070-1004-2025-2
CLINICAL ASPECTS OF DISASTER MEDICINE
Review article
Pathogenetic Basis for Determining Resistance to the Toxic Effect of Oxygen
A.S.Samoylov1, N.V.Rylova1, R.V.Nikonov1
Download the article in pdf format
1 State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russian Federation
UDC 616.092:612.273
P. 44-51
Summary. The aim of the study is to summarize the data contained in Russian and foreign scientific publications devoted to the study of resistance to the toxic effects of oxygen.
Materials and methods of the study. Research materials – scientific publications on the study of resistance to the toxic effects of oxygen. The search for publications was carried out using the electronic databases MEDLINE, Embase, Scopus, Web of Science, eLIBRARY, PubMed and Google Scholar for 2009-2024.
Research methods – analytical method and generalization method.
Research results and their analysis. Prevention of the toxic effects of oxygen and prediction of physiological reactions of the body of people working in conditions of increased pressure of gas and water environments or receiving oxygen barotherapy (oxygen therapy) in a pressure chamber have become highly significant. Individual tolerance to oxygen toxicity of the central nervous system (CNS) may vary slightly in the same person depending on his functional state and circadian rhythms. It has been suggested that resistance may depend on the genetically determined effectiveness of the antioxidant system, the amount of adipose tissue in the body, but there is no reliable evidence for this. It has also been reported that adaptation to hyperoxic exposure and degradation of adaptive mechanisms to it occur after a certain period of absence of such exposure, which requires further research.
Keywords: divers, hyperoxic hypoxia, oxygen barotherapy, resistance to the toxic effects of oxygen
For citation: Samoylov A.S., Rylova N.V., Nikonov R.V. Pathogenetic Basis for Determining Resistance to the Toxic Effect of Oxygen. Meditsina Katastrof = Disaster Medicine. 2025;2:44-51 (In Russ.). https://doi.org/10.33266/2070-1004-2025-2-44-51
Список источников / References
- Ciarlone G.E., Hinojo C.M., Stavitzski N.M., et al. CNS Function and Dysfunction during Exposure to Hyperbaric Oxygen in Operational and Clinical Settings. Redox Biol. 2019:101159.
- Смолин В.В., Соколов Г.Н., Павлов Б.Н. Водолазные спуски до 60 метров и их медицинское обеспечение. М.: Слово, 2013. 608 с. [Smolin V.V., Sokolov G.N., Pavlov B.N. Vodolaznyye Spuski do 60 Metrov i ikh Meditsinskoye Obespecheniye = Diving Descents up to 60 Meters and their Medical Support. Moscow, Slovo Publ., 2013. 608 p. (In Russ.)].
- Смолин В.В., Соколов Г.Н., Павлов Б.Н. Глубоководные водолазные спуски и их медицинское обеспечение. Т.1. М.: Слово, 2003. 592 с. [Smolin V.V., Sokolov G.N., Pavlov B.N. Glubokovodnyye Vodolaznyye Spuski i ikh Meditsinskoye Obespecheniye = Deep-Sea Diving Descents and their Medical Support. Vol. 1. Moscow, Slovo Publ., 2003. 592 p. (In Russ.)].
- Abel F.L., McNamee J.E., Cone D.L., et al. Effects of Hyperbaric Oxygen on Ventricular Performance, Pulmonary Blood Volume, and Systemic and Pulmonary Vascular Resistance. Undersea Hyperb. Med. 2000;27;2:67‑73.
- Mancardi D., Ottolenghi S., Attanasio U., Tocchetti C.G., Paroni R., Pagliaro P., Samaja M. Janus, or the Inevitable Battle Between too Much and too Little Oxygen. Antioxid. Redox Signal. 2022;7:972–989.
- Calvert J.W., Cahill J., Zhang J.H. Hyperbaric Oxygen and Cerebral Physiology. Neurol. Res. 2007;29:132–141.
- Cardenas D.P.,Muir E.R., Huang S., Boley A., Lodge D., Duong T.Q. Functional MRI during Hyperbaric Oxygen: Effects of Oxygen on Neurovascular Coupling and BOLD fMRI Signals. Neuroimage. 2015;119:382-389.
- Cardenas D.P., Muir E.R., Duong T.Q. MRI of Cerebral Blood Flow under Hyperbaric Conditions in Rats. NMR Biomed. 2016;29;7:961-968.
- Neubauer B., Tetzlaff K., Staschen С.M. Cardiac Output Changes during Hyperbaric Hyperoxia. Int. Arch. Occup. Environ. Health. 2001;74;2:119‑122.
- Hernando A., Posada-Quintero H., Peláez-Coca M.D., Gil E., Chon K.H. Autonomic Nervous System Characterization in Hyperbaric Environments Considering Respiratory Component and Non-Linear Analysis of Heart Rate Variability. Comput. Methods Programs. Biomed. 2022;214:106527.
- Chateau-Degat M.L., Poitras J., Abraini J.H. Hemodynamic Profiles of Intubated and Mechanically Ventilated Carbon Monoxide-Poisoned Patients during Systemic Hyperbaric Oxygen Therapy. BMC Anesthesiol. 2013;13;1:26.
- Kozakiewicz M., Slomko J., Buszko K. Acute Biochemical, Cardiovascular, and Autonomic Response to Hyperbaric (4 Atm) Exposure in Healthy Subjects. Evid. Based Complement Alternat. Med. 2018;27:5913176.
- Takemura A. Exposure to a Mild Hyperbaric Oxygen Environment Elevates Blood Pressure. J. Phys. Ther. Sci. 2022;34;5:360-364.
- Demchenko I.T., Zhilyaev S.Y., Moskvin A.N., et al. Autonomic Activation Links CNS Oxygen Toxicity to Acute Cardiogenic Pulmonary Injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2011;300;1:102-111.
- Demchenko I.T., Gasier H.G., Zhilyaev S.Y., et al. Baroreceptor Afferents Modulate Brain Excitation and Influence Susceptibility to Toxic Effects of Hyperbaric Oxygen. J. Appl. Physiol. 2014;117;5:525-534.
- Schipke J.D., Muth T., Pepper C., et al. Hyperoxia and the Cardiovascular System: Experiences with Hyperbaric Oxygen Therapy. Med. Gas Res. 2022;12;4:153-157.
- Burtscher J., Mallet R.T., Pialoux V., Millet G.P., Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid. Redox Signal. 2022;37:887–912.
- Семенцов В.Н., Иванов И.В. Использование нагрузочных тестов при экспертной оценке состояния здоровья и надежности труда водолазов // Мед. труда и пром. экол. 2019. Т.59. №12. С. 1000–1008 [Sementsov V.N., Ivanov I.V. Use of Stress Tests in Expert Assessment of Health Status and Work Reliability of Divers. Meditsina Truda i Promyshlennaya Ekologiya = Occupational Medicine and Industrial Ecology 2019;59;12:1000-1008 (In Russ.)].
- Cardenas D.P., Muir E.R., Huang S., Boley A., Lodge D., Duong T.Q. Functional MRI during Hyperbaric Oxygen: Effects of Oxygen on Neurovascular Coupling and BOLD fMRI Signals. Neuroimage. 2015;119:382-389.
- Hinojo C.M., Ciarlone G.E., D’Agostino D.P., Dean J.B. Exogenous Ketone Salts Inhibit Superoxide Production in the Rat Caudal Solitary Complex during Exposure to Normobaric and Hyperbaric Hyperoxia. J. Appl. Physiol. 2021;130;6:1936-1954.
- Шитов А.Ю., Кулешов В.И., Макеев Б.Л. Способ определения степени устойчивости человека к гипероксической гипоксии: Патент 2417788С1 Российская Федерация МПК51 A61G 10/02 № 2009140796/14.; заявл. 03.11.09; опубл. 10.05.11, Бюл. № 13. Заявитель и патентообладатель Шитов А.Ю. 3 с. [Shitov A.Yu., Kuleshov V.I., Makeyev B.L. Method for Determining the Degree of Human Resistance to Hyperoxic Hypoxia. Patent 2417788C1 Russian Federation IPC51 A61G 10/02 No.2009140796/14, declared 03.11.09, published 10.05.11, Bulletin No.13. Applicant and patent holder Shitov A.Yu. 3 p. (In Russ.)].
- Зверев Д.П., Мясников А.А., Шитов А.Ю., Чернов В.И., Андрусенко А.Н., Кленков И.Р., Исрафилов З.М. Физиологическое обоснование определения устойчивости водолазов к токсическому действию кислорода с помощью пероральных нагрузочных почечных проб // Морская медицина. 2020. Т.6. №3. С. 50–59 [Zverev D.P., Myasnikov A.A., Shitov A.Yu., Chernov V.I., Andrusenko A.N., Klenkov I.R., Israfilov Z.M. Physiological Justification for Determining the Resistance of Divers to the Toxic Effects of Oxygen Using Oral Renal Load Tests. Morskaya Meditsina = Marine Medicine. 2020;6;3:50–59 (In Russ.)].
The material was received 23.01.25; the article after peer review procedure 03.02.25; the Editorial Board accepted the article for publication 16.06.25