Review article

Psychophysiology of Inattention and Fatigue in Car Drivers Distracted for Electronic Devices

Nogovitsyna E.M. 1, Shilov S.Yu. 1,2

Download the article in pdf format

1 Perm State University named academician E.A.Wagner, Perm, Russian Federation

2 Branch of the Perm Federal Research Center “Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences”, Perm, Russian Federation

UDC 159.91+612.8+004.89

Pp. 51-56

Summary. Investigation purposes – a researching of psychophysiological features and an opportunity of inattention and fatigue prevention in car drivers distracted for electronic devices.

Materials and methods of the investigation. An analysis of 45 publications in Russian and English found using Cyberleninka, PubMed, Elibrary, ScienceDirect data bases was conducted.

Investigation results and their analysis A distraction of car drivers for electronic devices make them instant fatigued because of attempts of combining of driving and with unrelated to it actions. A distraction for mobile phone can stimuli all forms of attention looses – auditory, visual, biomechanical, cognitive. A conclusion was made that nowadays algorithms for attention tiredness / distraction analysis in car drivers are not distributed enough.

Key words:
attention distraction, car drivers, electronic devices, fatigue, inattention, mobile phones, navigation systems, psychophysiological features, smartphone, traffic accidents

Conflict of interest. The authors declare no conflict of interest

For citation: Nogovitsyna E.M., Shilov S.Yu. Psychophysiology of Inattention and Fatigue in Car Drivers Distracted for Electronic Devices. Meditsina Katastrof = Disaster Medicine. 2023;1:51-56 (In Russ.). https://doi.org/10.33266/2070-1004-2023-1-51-56



  1. Dyatlov M.N., Dolgov K.O., Todorev A.N. The Main Factors that Reduce the Driver’s Performance before the Flight. Molodoy Uchenyy. 2013;11:99-103 (In Russ.).
  2. Bulygin A.O., Kashevnik A.M. Analysis of Modern Research in the Field of Driver Fatigue Detection in the Vehicle Cabin. Sistemy Analiza i Obrabotki Dannykh = Analysis and Data Processing Systems. 2021;3:19-36. doi: 10.17212/2782-2001-2021-3-19-36 (In Russ.).
  3. Zhdanova O.A. Development of an Intelligent Driver Fatigue Control System. IX Mezhdunarodnaya Studencheskaya Nauchnaya Konferentsiya «Studencheskiy Nauchnyy Forum» = IX International Student Scientific Conference “Student Scientific Forum”. 2017. URL: https://scienceforum.ru/2017/article/2017040107 (In Russ.).
  4. Peruzzini M., Tonietti M., Iani C. Transdisciplinary Design Approach Based on Driver’s Workload Monitoring. J. Industr. Inform. Integr. 2019;15;2;91-102. doi: 10.1016/j.jii.2019.04.001.
  5. Svechinskiy S.A., Solodovnikov D.N. Device for Monitoring the Driver’s Fatigue Behind the Wheel. Mezhdunarodnyy Studencheskiy Nauchnyy Vestnik = European Student Scientific Journal. 2021;2. URL: https://eduherald.ru/ru/article/view?id=20555 (In Russ.).
  6. Lashkov I.B. Analysis of the Driver’s Behavior when Driving a Vehicle Using the Front Camera of a Smartphone. Informatsionno-Upravlyayushchiye Sistemy = Information and Control Systems. 2017;4:7-17 (In Russ.).
  7. Katysheva K.V. Influence of Psychophysiological Characteristics of Drivers on Road Safety. Molodoy Uchenyy. 2017;12:172-175 (In Russ.).
  8. Penshin N.V., Ivlev V.Yu. Physiology of the Driver and Its Impact on Road Safety. Mezhdunarodnyy Nauchno-Issledovatelskiy Zhurnal. 2016;1:59-61. doi: 10.18454/IRJ.2016.43.021 (In Russ.).
  9. Niranjan S., Gabaldon J., Hawkins T.G., Gupta V.K., McBride M. The Influence of Personality and Cognitive Failures on Distracted Driving Behaviors among Young Adults. Transportation Research Part F: Traffic Psychology and Behaviour. 2022;84:313-329. doi: 10.1016/j.trf.2021.12.001.
  10. Rybalochko Ye.Yu., Yatsenko A.A. Psychophysical Features of a Person when Driving at High Speeds. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy = International Journal of Applied and Basic Researches. 2016;7-4:702-705 (In Russ.).
  11. ICT – a Source or Means of Road Traffic Prevention? Vek Kachestva = Age of Quality. 2011;2:26-29 (In Russ.).
  12. Yared T., Patterson P. The Impact of Navigation System Display Size and Environmental Illumination on Young Driver Mental Workload. Transportation Research Part F: Traffic Psychology and Behaviour. 2020;74:330-344. doi: 10.1016/j.trf.2020.08.027.
  13. Berger M., Eranil A., Bernhaupt R., Pfleging B. InShift: A Shifting Infotainment System to Enhance Co-Driver Experience and Collaboration. 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Association for Computing Machinery. New York, USA, 2021. P. 10-15. doi: 10.1145/3473682.3480254.
  14. Strayer D. Is the Technology in Your Car Driving You to Distraction? Policy Insights from the Behavioral and Brain Sciences. 2015;2;1:157-165. doi: 10.1177/2372732215600885.
  15. Gazder U., Assi K.J. Determining Driver Perceptions about Distractions and Modeling their Effects on Driving Behavior at Different Age Groups. Journal of Traffic and Transportation Engineering (English Edition). 2022;9;1:33-43. doi: 10.1016/j.jtte.2020.12.005.
  16. García-Herrero S., Febres J.D., Boulagouas W., Gutiérrez J.M., Mariscal Saldaña M.Á. Assessment of the Influence of Technology-Based Distracted Driving on Drivers’ Infractions and Their Subsequent Impact on Traffic Accidents Severity. International Journal of Environmental Research and Public Health. 2021;18;13:7155. doi: 10.3390/ijerph18137155.
  17. Ivasik D.V., Vasilchenko A.A., Sidorenko T.A., Misyurin P.L. Problems of Ensuring Traffic Safety. Inzhenernyy Vestnik Dona = Engineering Journal of Don. 2019;3:1-10 (In Russ.).
  18. Baker J.M., Bruno J.L., Piccirilli A., Gundran A., Harbott L.K., Sirkin D.M., Marzelli M., Hosseini S.M.H., Reiss A.L. Evaluation of Smartphone Interactions on Drivers’ Brain Function and Vehicle Control in an Immersive Simulated Environment. Sci. Rep. 2021;11:1998. doi: 10.1038/s41598-021-81208-5.
  19. Road Safety Factsheet: Driver Distraction. The Royal Society for the Prevention of Accidents. Calthorpe Road, Edgbaston, Birmingham, 2017. URL: https://www.rospa.com/rospaweb/docs/advice-services/road-safety/drivers/driver-distraction.pdf.
  20. Huisingh C., Owsley C., Levitan, E.B., Irvin M.R., MacLennan P., McGwin G. Distracted Driving and Risk of Crash or Near-Crash Involvement among Older Drivers Using Naturalistic Driving Data with a Case-Crossover Study Design. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74;4:550-555. doi: gerona/gly119.
  21. Dingus T.A., Guo F., Lee S., Antin J.F., Perez M., Buchanan-King M., Hankey J. Driver Crash Risk Factors and Prevalence Evaluation Using Naturalistic Driving Data. Proceedings of the National Academy of Sciences of the United States of America. 2016;113;10:2636-2641.
  22. Cooper J.M., Wheatley C.L., McCarty M.M., Motzkus C.J., Lopes C.L., Erickson G.G., Baucom B.R.W., Horrey W.J., Strayer D.L. Age-Related Differences in the Cognitive, Visual, and Temporal Demands of In-Vehicle Information Systems. Front. Psychol. 2020;11:1154. doi: 10.3389/fpsyg.2020.01154.
  23. Ortega C.A.C., Mariscal M.A.; Boulagouas W., Herrera S., Espinosa J.M., García-Herrero S. Effects of Mobile Phone Use on Driving Performance: An Experimental Study of Workload and Traffic Violations. Int. J. Environ. Res. Public Health. 2021;18:7101. doi: 10.3390/ijerph1813710.
  24. Zheng R., Nakano K., Ishiko H., Hagita K., Kihira M., Yokozeki T. Eye‑Gaze Tracking Analysis of Driver Behavior While Interacting with Navigation Systems in an Urban Area. IEEE Transactions on Human-Machine Systems. 2015;46. doi: 10.1109/THMS.2015.2504083.
  25. Knapper A., Van Nes N., Christoph M., Hagenzieker M., Brookhuis K. The Use of Navigation Systems in Naturalistic Driving. Traffic Injury Prevention. 2016:17;3:264–270. doi: 10.1080/15389588.2015.1077384.
  26. Fountas G., Pantangi S.S., Hulme K.F., Anastasopoulos P.Ch. The Effects of Driver Fatigue, Gender, and Distracted Driving on Perceived and Observed Aggressive Driving Behavior: A Correlated Grouped Random Parameters Bivariate Probit Approach. Analytic Methods in Accident Research. 2019;22;100091:2213-6657. doi: 10.1016/j.amar.2019.100091.
  27. Vogelpohl T., Kühn M., Hummel T., Vollrath M. Asleep at the Automated Wheel-Sleepiness and Fatigue During Highly Automated Driving. Accident, Analysis and Prevention. 2019;126:70-84. doi:10.1016/j.aap.2018.03.013.
  28. Saxby D.J., Matthews G., Neubauer C. The Relationship between Cell Phone Use and Management of Driver Fatigue: It’s Complicated. Journal of Safety Research. 2017;61:129-140. doi: 10.1016/j.jsr.2017.02.016.
  29. Fraschetti A., Cordellieri P., Lausi G., Mari E., Paoli E., Burrai J., Quaglieri A., Baldi M., Pizzo A., Giannini A.M. Mobile Phone Use “on the Road”: A Self-Report Study on Young Drivers. Frontiers in Psychology. 2021;12:620653. doi: 10.3389/fpsyg.2021.620653.
  30. McDonald C.C., Sommers M.S. Teen Drivers’ Perceptions of Inattention and Cell Phone Use While Driving. Traffic Inj. Prev. 2015;16;2:S52-58. doi: 10.1080/15389588.2015.1062886.
  31. Zhang L., Cui B., Yang M., Guo F., Wang J. Effect of Using Mobile Phones on Driver’s Control Behavior Based on Naturalistic Driving Data. International Journal of Environmental Research and Public Health. 2019;16;8:1464. doi: 10.3390/ijerph16081464.
  32. Darzi A., Gaweesh S.M., Ahmed M.M., Novak D. Identifying the Causes of Drivers’ Hazardous States Using Driver Characteristics, Vehicle Kinematics, and Physiological Measurements. Frontiers in Neuroscience. 2018;12:568.
  33. Leem S.K., Khan F., Cho S.H. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention. Sensors (Basel, Switzerland). 2017;17;6:1240. doi: 10.3390/s17061240.
  34. He J., McCarley J.S., Crager K., Jadliwala M., Hua L., Huang S. Does Wearable Device Bring Distraction Closer to Drivers? Comparing Smartphones and Google Glass. Applied Ergonomics. 2018;70:156–166. doi: 10.1016/j.apergo.2018.02.022.
  35. Inayat K., Sanam S.R., Shah K., Shaukat A., Tae-Sun C. Analyzing Drivers’ Distractions due to Smartphone Usage: Evidence from AutoLog Dataset. Mobile Information Systems. 2021;2021:14. doi: 10.1155/2021/5802658.
  36. Riegler A., Riener A., Holzmann C. Adaptive Dark Mode: Investigating Text and Transparency of Windshield Display Content for Automated Driving. Conference: Mensch und Computer. Hamburg, Germany, 2019. doi: 10.18420/muc2019-ws-612.
  37. Ulrich L., Nonis F., Vezzetti E., Moos S., Caruso G., Shi Y., Marcolin F. Can ADAS Distract Driver’s Attention? An RGB-D Camera and Deep Learning-Based Analysis. Appl. Sci. 2021;11:11587. doi: 10.3390/app112411587.
  38. Rathi R., Sawant A., Jain L., Kulkarni S. Driver Fatigue and Distraction Analysis Using Machine Learning Algorithms. International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing. Ed. Gupta D., Khanna A., Bhattacharyya S., Hassanien A.E., Anand S., Jaiswal A. Springer, Singapore, 2021. P. 1165. doi: 10.1007/978-981-15-5113-0_88.
  39. Dong B.-T., Lin H.-Y. An On-Board Monitoring System for Driving Fatigue and Distraction Detection. 22nd IEEE International Conference on Industrial Technology (ICIT). Valencia, Spain, 2021. P. 850-855. doi: 10.1109/ICIT46573.2021.9453676.
  40. Ding C., Chae R., Wang J., Zhang L., Hong H., Zhu X., Li C. Inattentive Driving Behavior Detection Based on Portable FMCW Radar. IEEE Transactions on Microwave Theory and Techniques. 2019;67;10:4031-4041. doi: 10.1109/TMTT.2019.2934413.
  41. Tkachenko O.N., Dorokhov V.B., Dementiyenko V.D. Psychophysiological Aspects of Maintaining the Optimal Level of Attention of Drivers in Partially Automated Driving. Sotsialno-Ekologicheskiye Tekhnologii = Environment and Human: Ecological Studies. 2020;4:482-504 (In Russ.).
  42. Nefedyev A.I., Nefedyev D.I., Bezborodov S.A., Gusev V.G. Control of the Driver’s Condition During the Movement of the Vehicle. Izmereniye. Monitoring. Upravleniye. Kontrol = Measuring. Monitoring. Management. Control. 2021;2:60-64 (In Russ.).
  43. Fan C., Peng Y., Peng S., Zhang H., Wu Y., Kwong S. Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method. IEEE Transactions on Intelligent Transportation Systems. 2021;2021:1-11. doi: 10.1109/TITS.2021.3125737.
  44. Shin J., Kim S., Yoon T., Joo C., Jung H.I. Smart Fatigue Phone: Real-Time Estimation of Driver Fatigue Using Smartphone-Based Cortisol Detection. Biosensors & Bioelectronics. 2019;136:106-111. doi: 10.1016/j.bios.2019.04.046.
  45. Xu X., Hang G., Jiadi Y., Yingying C., Yanmin Z., Guangtao X., Minglu L. ER: Early Recognition of Inattentive Driving Leveraging Audio Devices on Smartphones. IEEE Conference on Computer Communications. 2017. P. 1-9. doi: 10.1109/INFOCOM.2017.8057022.


The material was received 08.02.23; the article after peer review procedure 16.02.23; the Editorial Board accepted the article for publication 23.03.23