Original article

Prospects for Creation of Autonomous Life Support Complexes Using Biological Systems for Arctic and Far North Conditions

Download the article in pdf format

Markin I.V. 1, Shchelkanova E.S.1, Volodyashkin R.A.1, Zhurbin E.A. 1, Fisun A.Ya. 1 

1 Military innovative technopolis “ERA”, Anapa, Russian Federation

UDC 57.081.23(211)

Pp. 73-80

Abstract. The purpose of the study is a comparative analysis of the implemented projects of closed ecological systems and the creation on their basis of own scheme of autonomous life-support complex for the conditions of the Arctic and the Far North.

Materials and methods of research. The object of the study is implemented projects of closed ecological systems. The subject of the study is the principles of configuration of such projects, their main components and the relationship between them.

Research results and their analysis. The support systems created at different times, with the purpose to be used in long-duration space flights or to carry out fundamental ecological research, were analyzed. Such projects were based on the use of biological systems, which opens the possibility of their use to ensure the autonomy of infrastructure in the Arctic and Far North. The scheme of the complex planned for development is proposed. This complex allows to recycle waste products, meets human nutritional needs and produces biofuel of the third generation.

Keywords: Arctic and Far North areas, biofuel, BIOSPHERA-2 project, life support systems, MELISSA project, microalgae, project, proposed life support system BIOS project

For citation: Markin I.V., Shchelkanova E.S., Volodyashkin R.A., Zhurbin E.A., Fisun A.Ya. 

Prospects for Creation of Autonomous Life Support Complexes Using Biological Systems for Arctic and Far North Conditions. Meditsina katastrof = Disaster Medicine. 2021;3:73-80 (In Russ.). https://doi.org/10.33266/2070-1004-2021-3-73-80



  1. Rossiyskie Vladeniya v Arktike. Istoriya i Problemy Mezhdunarodno-Pravovogo Statusa. TASS. 2019. URL: https://tass.ru/info/6312329 (Accessed: 30.11.2020) (In Russ.).
  2. Prirodopodobnye Tekhnologii dlya Nuzhd Arktiki. Mezhdunarodnyy Arkticheskiy Forum. 2020. URL: https://forumarctica.ru/news/prirodopodobnye-tehnologii-dlja-nuzhd-arktiki/ (Accessed: 03.02.2021) (In Russ.).
  3. Toropushina E.E. Assessment of the Level of Development of Social Infrastructure in the Regions of the North and the Arctic of Russia. All-Russian Economic Journal ECO. 2016;6;504. [Торопушина Е.Е. Оценка уровня развития социальной инфраструктуры в регионах Севера и Арктики России // Всероссийский экономический журнал ЭКО. 2016. №6(504)]. (In Russ.).
  4. Life-Support System. Wikipedia. 2020. URL: https://en.wikipedia.org/wiki/Life-support_system (data obrashcheniya: 03.12.2020).
  5. Eckart P. Spaceflight Life Support and Biospherics. Torrance, Microcosm Press, 1996. 444 p.
  6. Lehr F., Posten C. Closed Photo-Bioreactors as Tools for Biofuel Production. Current Opinion in Biotechnology. 2009;20:3:280-285.
  7. Dempster W.F. Methods for Measurement and Control of Leakage in CELSS and their Application and Performance in the Biosphere 2 Facility. Advances in Space Research. 1994;14;11:331-335.
  8. Patras D., Moraru C.V., Socaciu C. Screening of Bioactive Compounds Synthesized by Microalgae: a Progress Overview on Extraction and Chemical Analysis. Studia Universitatis Babeș-Bolyai Chemia. 2018;63:21-35.
  9. Tamponnet C., et al. Man in Space-A European Challenge in Biological Life-Support. ESA Bulletin-European Space Agency. 1991;67:39-49.
  10. Nelson M., Bass E.P., Leigh L. Biosphere 2 and the Study of Human / Ecosystem Dynamics. Humans as Components of Ecosystems. New York, Springer, 1993. P. 280-296.
  11. Dempster W.F. Biosphere 2 Engineering Design. Ecological Engineering. 1999;13;1-4:31-42.
  12. Severinghaus J.P., et al. Oxygen Loss in Biosphere 2. EOS, Transactions American Geophysical Union. 1994;75;3:33-37.
  13. Nelson M., Silverstone S., Poynter J. Biosphere 2 Agriculture: Test Bed for Intensive, Sustainable, Non-Polluting Farming Systems. Outlook on Agriculture. 1993:22;3:167-174.
  14. Mergeay M., et al. MELISSA-A Microorganisms-Based Model for CELSS Develop. Proceedings 3rd European Symp. Space Thermal Control and Life Support Systems, Noordwiyk. 1987. P. 65-68.
  15. Garland J.L. Microbial Functions in Space: Mars Transit to Early Planetary Base Exploration Missions. Acta Astronautica. 2007;60;4-7:518-524.
  16. Kirensky L.V., et al. Theoretical and Experimental Decisions in the Creation of an Artificial Ecosystem for Human Life Support in Space. Life Sciences and Space Research. 1971;9:75-80.
  17. Gitelson I.I., Lisovsky G.M., MacElroy R.D. Manmade Closed Ecological Systems. London, Taylor & Francis, 2003. 402 p.
  18. Salisbury F.B., Gitelson J.I., Lisovsky G.M. Bios-3: Siberian Experiments in Bioregenerative Life Support. BioScience. 1997;47;9:575-585.
  19. Becker E. W. Micro-Algae as a Source of Protein. Biotechnology Advances. 2007;25;2: 207-210.
  20. Noack R. Energy and Protein Requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee. WHO Technical Report Series No. 522, 118 S., Genf 1973. Food/ Nahrung. 1974;18;3:329-332.
  21. Sathasivam R., et al. Microalgae Metabolites: a Rich Source for Food and Medicine. Saudi Journal of Biological Sciences. 2019;26;4:709-722.
  22. Schenk P.M., et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Research. 2008;1;1:20-43.
  23. Dismukes G.C., et al. Aquatic Phototrophs: Efficient Alternatives to Land-Based Crops for Biofuels. Current Opinion in Biotechnology. 2008;19;3:235-240.
  24. Chisti Y. Biodiesel from Microalgae. Biotechnology Advances. 2007;25;3:294-306.
  25. Cantrell K.B., et al. Livestock Waste-To-Bioenergy Generation Opportunities. Bioresource Technology. 2008;99;17:7941-7953.
  26. Rodolfi L., et al. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low‐Cost Photobioreactor. Biotechnology and Bioengineering. 2009;102;1:100-112.
  27. Hirano A., et al. CO2 Fixation and Ethanol Production with Microalgal Photosynthesis and Intracellular Anaerobic Fermentation. Energy. 1997;22;2-3:137-142.
  28. Qin J.G. Bio-Hydrocarbon from Algae Impacts of Temperature, Light and Salinity on Algae Growth.A Report for the Rural Industries Research and Development Corporation. Australia, RIRDC Publication. 2005;05;25:7-11.
  29. Tauts M.I., Selivanova T.M., Semenenko V.E. K Rasshifrovke Effekta Avtostimulyatsii Rosta Khlorelly. Fiziologiya Rastenii. 1971;18;1:69–77. [Таутс М.И., Селиванова Т. М., Семененко В.Е. К расшифровке эффекта автостимуляции роста хлореллы // Физиология растений. 1971. Т.18, №1. С. 69–77]. (In Russ.).
  30. Faheed F.A., Fattah Z.A. Effect of Chlorella Vulgaris as Bio-Fertilizer on Growth Parameters and Metabolic Aspects of Lettuce Plant. Journal of Agriculture and Social Sciences. 2008;4;4:165-169.
  31. Garcia-Gonzalez J., Sommerfeld M. Biofertilizer and Biostimulant Properties of the Microalga Acutodesmus Dimorphus. Journal of Applied Phycology. 2016;28;2:1051-1061.
  32. Kholssi R., et al. Biofertilizing Effect of Chlorella Sorokiniana Suspensions on Wheat Growth. Journal of Plant Growth Regulation. 2019;38;2:644-649.
  33. Kim M.J., et al. Effect of Biostimulator Chlorella Fusca on Improving Growth and Qualities of Chinese Chives and Spinach in Organic Farm. The Plant Pathology Journal. 2018;34;6:567-575.

The material was received 16.04.21; the article after peer review procedure 17.05.21; the Editorial Board accepted the article for publication 10.09.21